Comparison of Pharmacodynamics of Azithromycin and Erythromycin In Vitro and In Vivo

Author:

den Hollander Jan G.1,Knudsen Jenny D.2,Mouton Johan W.1,Fuursted Kurt2,Frimodt-Møller Niels2,Verbrugh Henri A.1,Espersen Frank2

Affiliation:

1. Department of Medical Microbiology and Infectious Diseases, University Hospital, Rotterdam, The Netherlands,1 and

2. Division of Microbiology, Statens Serum Institut, Copenhagen, Denmark2

Abstract

ABSTRACT In this study, we determined the efficacy of various dosing regimens for erythromycin and azithromycin against four pneumococci with different susceptibilities to penicillin in an in vitro pharmacokinetic model and in a mouse peritonitis model. The MIC was 0.03 μg/ml, and the 50% effective doses (determined after one dose) of both drugs were comparable for the four pneumococcal strains and were in the range of 1.83 to 6.22 mg/kg. Dosing experiments with mice, using regimens for azithromycin of one to eight doses/6 h, showed the one-dose regimen to give the best result; of the pharmacodynamic parameters tested (the maximum drug concentration in serum [ C max ], the times that the drug concentration in serum remained above the MIC and above the concentration required for maximum killing, and the area under the concentration time curve), C max was the best predictor of outcome. The bacterial counts in mouse blood or peritoneal fluid during the first 24 h after challenge were not correlated to survival of the mice. The serum concentration profiles obtained with mice for the different dosing regimens were simulated in the in vitro pharmacokinetic model. Here as well, the one-dose regimen of azithromycin showed the best result. However, the killing curves in vivo in mouse blood and peritoneal fluid and in the vitro pharmacokinetic model were not similar. The in vitro killing curves showed a decrease of 2 log 10 within 2 and 3 h for azithromycin and erythromycin, respectively, whereas the in vivo killing curves showed a bacteriostatic effect for both drugs. It is concluded that the results in terms of predictive pharmacodynamic parameters are comparable for the in vitro and in vivo models and that high initial concentrations of azithromycin favor a good outcome.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3