Efflux Pump-Mediated Intrinsic Drug Resistance in Mycobacterium smegmatis

Author:

Li Xian-Zhi1,Zhang Li1,Nikaido Hiroshi1

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202

Abstract

ABSTRACT The Mycobacterium smegmatis genome contains many genes encoding putative drug efflux pumps. Yet with the exception of lfrA , it is not clear whether these genes contribute to the intrinsic drug resistance of this organism. We showed first by reverse transcription (RT)-PCR that several of these genes, including lfrA as well as the homologues of Mycobacterium tuberculosis Rv1145, Rv1146, Rv1877, Rv2846c ( efpA ), and Rv3065 ( mmr and emrE ), were expressed at detectable levels in the strain mc 2 155. Null mutants each carrying an in-frame deletion of these genes were then constructed in M. smegmatis . The deletions of the lfrA gene or mmr homologue rendered the mutant more susceptible to multiple drugs such as fluoroquinolones, ethidium bromide, and acriflavine (two- to eightfold decrease in MICs). The deletion of the efpA homologue also produced increased susceptibility to these agents but unexpectedly also resulted in decreased susceptibility to rifamycins, isoniazid, and chloramphenicol (two- to fourfold increase in MICs). Deletion of the Rv1877 homologue produced some increased susceptibility to ethidium bromide, acriflavine, and erythromycin. The upstream region of lfrA contained a gene encoding a putative TetR family transcriptional repressor, dubbed LfrR. The deletion of lfrR elevated the expression of lfrA and produced higher resistance to multiple drugs. Multidrug-resistant single-step mutants, independent of LfrA and attributed to a yet-unidentified drug efflux pump (here called LfrX), were selected in vitro and showed decreased accumulation of norfloxacin, ethidium bromide, and acriflavine in intact cells. Finally, use of isogenic β-lactamase-deficient strains showed the contribution of LfrA and LfrX to resistance to certain β-lactams in M. smegmatis .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3