Comparison of Δ relA Strains of Escherichia coli and Salmonella enterica Serovar Typhimurium Suggests a Role for ppGpp in Attenuation Regulation of Branched-Chain Amino Acid Biosynthesis

Author:

Tedin K.1,Norel F.1

Affiliation:

1. Unité de Génétique des Bactéries Intracellulaires, Institut Pasteur, F-75724 Paris Cedex 15, France

Abstract

ABSTRACT The growth recovery of Escherichia coli K-12 and Salmonella enterica serovar Typhimurium Δ relA mutants were compared after nutritional downshifts requiring derepression of the branched-chain amino acid pathways. Because wild-type E. coli K-12 and S. enterica serovar Typhimurium LT2 strains are defective in the expression of the genes encoding the branch point acetohydroxy acid synthetase II ( ilvGM ) and III ( ilvIH ) isozymes, respectively, Δ relA derivatives corrected for these mutations were also examined. Results indicate that reduced expression of the known global regulatory factors involved in branched-chain amino acid biosynthesis cannot completely explain the observed growth recovery defects of the Δ relA strains. In the E. coli K-12 MG1655 Δ relA background, correction of the preexisting rph -1 allele which causes pyrimidine limitations resulted in complete loss of growth recovery. S. enterica serovar Typhimurium LT2 Δ relA strains were fully complemented by elevated basal ppGpp levels in an S. enterica serovar Typhimurium LT2 Δ relA spoT1 mutant or in a strain harboring an RNA polymerase mutation conferring a reduced RNA chain elongation rate. The results are best explained by a dependence on the basal levels of ppGpp, which are determined by relA -dependent changes in tRNA synthesis resulting from amino acid starvations. Expression of the branched-chain amino acid operons is suggested to require changes in the RNA chain elongation rate of the RNA polymerase, which can be achieved either by elevation of the basal ppGpp levels or, in the case of the E. coli K-12 MG1655 strain, through pyrimidine limitations which partially compensate for reduced ppGpp levels. Roles for ppGpp in branched-chain amino acid biosynthesis are discussed in terms of effects on the synthesis of known global regulatory proteins and current models for the control of global RNA synthesis by ppGpp.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3