Fusion of the N-terminal 119 amino acids with the RelA-CTD renders its growth inhibitory effects ppGpp-dependent

Author:

Tailor KrishmaORCID,Sagar Prarthi,Dave Keyur,Pohnerkar JayashreeORCID

Abstract

AbstractThe guanosine nucleotide derivatives ppGpp and pppGpp, are central to the remarkable capacity of bacteria to adapt to fluctuating environment and metabolic perturbations. These alarmones are synthesized by two proteins, RelA and SpoT in E. coli and the activities of each of the two enzymes are highly regulated for homeostatic control of (p)ppGpp levels in the cell. Although the domain structure and function of RelA are well defined, the findings of this study unfold the regulatory aspect of RelA that is possibly relevant in vivo. We uncover here the importance of the N-terminal 1-119 amino acids of the enzymatically compromised (p)ppGpp hydrolytic domain (HD) of monofunctional RelA for the (p)ppGpp mediated regulation of RelA-CTD function. We find that even moderate level expression of RelA appreciably reduces growth when the basal levels of (p)ppGpp in the cells are higher than in the wild type, an effect independent of its ability to synthesize (p)ppGpp. This is evidenced by the growth inhibitory effects of oversynthesis of the RelA-CTD in the relA+ strain but not in relA null mutant, suggesting the requirement of the functional RelA protein for basal level synthesis of (p)ppGpp, accordingly corroborated by the restoration of the growth inhibitory effects of the RelA-CTD expression in the relA1 spoT202 mutant. The N-terminal 119 amino acids of RelA fused in-frame with the RelA-CTD, both from 406-744 amino acids (including TGS) and from 454-744 amino acids (sans TGS) caused growth inhibition only in spoT1 and spoT202 relA1 mutants, uncovering the hitherto unrealized (p)ppGpp-dependent regulation of RelA-CTD function. An incremental rise in the (p)ppGpp levels is proposed to progressively modulate the interaction of RelA-CTD with the ribosomes, with possible implications in the feedback regulation of the N-terminal (p)ppGpp synthesis function, a proposal that best explains the nonlinear relationship between (p)ppGpp synthesis and increased ratio of RelA:ribosomes, both in vitro as well as in vivo.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3