Differential Modulation by Ca 2+ of Type III Secretion of Diffusely Adhering Enteropathogenic Escherichia coli

Author:

Ide Tina1,Michgehl Silke1,Knappstein Sabine1,Heusipp Gerhard1,Schmidt M. Alexander1

Affiliation:

1. Institut für Infektiologie-Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, Münster, Germany

Abstract

ABSTRACT Enteropathogenic Escherichia coli (EPEC) strains are a common cause of persistent diarrhea among infants, primarily in developing countries. The pathogenicity of EPEC is associated with the expression and secretion of bacterial proteins encoded by the chromosomal locus of enterocyte effacement (LEE). The LEE-encoded type III-secreted proteins EspA, EspB, and EspD are part of a molecular syringe, which is used by EPEC to translocate effector proteins directly into the cytoplasm of host cells. The type III-secreted translocated intimin receptor (Tir) protein is thought to be delivered by an Esp-dependent mechanism into the host cell, and this is followed by insertion into the host plasma membrane, where the protein serves as the receptor for intimin, an afimbrial bacterial adhesin. Type III secretion is subject to environmental regulation, and secretion can be induced in vitro by growing bacteria in cell culture medium. In this study we found that Ca 2+ is involved in the regulation of type III secretion both in classical locally adherent EPEC and in atypical diffusely adherent EPEC. Interestingly, we observed contrasting secretion of Esp proteins and Tir in response to Ca 2+ . While the secretion of Tir is clearly enhanced and the protein is integrated into HeLa membranes under calcium chelation conditions, Esp secretion is strongly reduced under these conditions. These data suggest that under Ca 2+ -depleted conditions Tir might be secreted into the medium and integrated into host membranes by an Esp-independent mechanism, without the need for a functional type III translocation machinery.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3