The Ruler Protein EscP of the Enteropathogenic Escherichia coli Type III Secretion System Is Involved in Calcium Sensing and Secretion Hierarchy Regulation by Interacting with the Gatekeeper Protein SepL

Author:

Shaulov Lihi1,Gershberg Jenia1,Deng Wanyin2,Finlay B. Brett2,Sal-Man Neta1ORCID

Affiliation:

1. The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel

2. Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

ABSTRACT The type III secretion system (T3SS) is a multiprotein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. To ensure that effector proteins are efficiently translocated into the host cell, bacteria must be able to sense their contact with the host cell. In this study, we found that EscP, which was previously shown to function as the ruler protein of the enteropathogenic Escherichia coli T3SS, is also involved in the switch from the secretion of translocator proteins to the secretion of effector proteins. In addition, we demonstrated that EscP can interact with the gatekeeper protein SepL and that the EscP-SepL complex dissociates upon a calcium concentration drop. We suggest a model in which bacterial contact with the host cell is accompanied by a drop in the calcium concentration that causes SepL-EscP complex dissociation and triggers the secretion of effector proteins. IMPORTANCE The emergence of multidrug-resistant bacterial strains, especially those of pathogenic bacteria, has serious medical and clinical implications. At the same time, the development and approval of new antibiotics have been limited for years. Recently, antivirulence drugs have received considerable attention as a novel antibiotic strategy that specifically targets bacterial virulence rather than growth, an approach that applies milder evolutionary pressure on the bacteria to develop resistance. A highly attractive target for the development of antivirulence compounds is the type III secretion system, a specialized secretory system possessed by many Gram-negative bacterial pathogens for injecting virulence factors (effectors) into host cells. In this study, we shed light on the molecular mechanism that allows bacteria to sense their contact with the host cell and to respond with the timed secretion of effector proteins. Understanding this critical step for bacterial virulence may provide a new therapeutic strategy.

Funder

Israel Science Foundation

Gouvernement du Canada | Canadian Institutes of Health Research

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3