catM encodes a LysR-type transcriptional activator regulating catechol degradation in Acinetobacter calcoaceticus

Author:

Romero-Arroyo C E1,Schell M A1,Gaines G L1,Neidle E L1

Affiliation:

1. Department of Microbiology, University of Georgia, Athens 30602, USA.

Abstract

On the basis of the constitutive phenotypes of two catM mutants of Acinetobacter calcoaceticus, the CatM protein was proposed to repress expression of two different loci involved in catechol degradation, catA and catBCIJFD (E. Neidle, C. Hartnett, and L. N. Ornston, J. Bacteriol. 171:5410-5421, 1989). In spite of its proposed negative role as a repressor, CatM is similar in amino acid sequence to positive transcriptional activators of the LysR family. Investigating this anomaly, we found that insertional inactivation of catM did not cause the phenotype expected for the disruption of a repressor-encoding gene: in an interposon-generated catM mutant, no cat genes were expressed constitutively, but rather catA and catB were still inducible by muconate. Moreover, this catM mutant grew poorly on benzoate, a process requiring the expression of all cat genes. The inducibility of the cat genes in this catM mutant was completely eliminated by a 3.5-kbp deletion 10 kbp upstream of catM. In this double mutant, catM in trans restored muconate inducibility to both catA and catB. These results suggested the presence of an additional regulatory locus controlling cat gene expression. The ability of CatM to function as an activator was also suggested by these results. In support of this hypothesis, in vivo methylation protection assays showed that CatM protects two guanines in a dyad 65 nucleotides upstream of the catB transcriptional start site, in a location and pattern typical of LysR-type transcriptional activators. Gel mobility shift assays indicated that CatM also binds to a region upstream of catA. DNA sequence analysis revealed a nucleotide near the 3' end of catM not present in the published sequence. Translation of the corrected sequence resulted in the deduced CatM protein being 52 residues longer than previously reported. The size, amino acid sequence, and mode of action of CatM now appear similar to, and typical of, what has been found for transcriptional activators in the LysR family. Analysis of one of the constitutive alleles of catM previously thought to encode a dysfunctional repressor indicated instead that it encodes an inducer-independent transcriptional activator.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3