Differential Alterations in Host Peripheral Polymorphonuclear Leukocyte Chemiluminescence During the Course of Bacterial and Viral Infections

Author:

McCarthy James P.1,Bodroghy Robert S.1,Jahrling Peter B.1,Sobocinski Philip Z.1

Affiliation:

1. United States Army Medical Research of Infectious Diseases, Fort Detrick, Frederick, Maryland 21701

Abstract

Previous studies have shown that stimulation of the oxidative metabolism in polymorphonuclear leukocytes (PMN) by in vitro phagocytosis of various microorganisms results in photon emission, termed chemiluminescence (CL). Studies were conducted to determine whether bacterial and viral infections induce enhanced basal endogenous host peripheral PMN CL in the absence of in vitro phagocytic stimulation. Nonimmune rats and guinea pigs as well as immune rats were inoculated with various doses (10 5 to 10 7 ) of live vaccine strain Francisella tularensis (per 100 g of body weight). In addition, nonimmune guinea pigs were inoculated with 40,000 plaque-forming units of Pichinde virus. Luminol-assisted endogenous PMN CL was measured at various time intervals after inoculation of microorganisms. Enhanced endogenous PMN CL was detected as early as the appearance of fever (12 h) in nonimmune animals infected with F. tularensis . Addition of sodium azide, N -ethylmaleimide, superoxide dismutase, or catalase to the CL reaction mixture containing PMN from infected animals significantly decreased the CL response. Immune rats challenged with F. tularensis exhibited resistance to infection and a decreased PMN CL compared with nonimmune rats 24 and 48 h after inoculation. However, the CL response from immune rats was significantly elevated, compared with control values. In contrast to the results obtained with the model bacterial infection, PMN isolated from guinea pigs inoculated with Pichinde virus failed to exhibit enhanced CL, compared with controls, despite significant viremia and fever. Results suggest that enhanced endogenous CL during bacterial infection occurs through mechanisms involving increased PMN oxidative metabolism and the subsequent generation of microbicidal forms of oxygen. Further, measurement of endogenous PMN CL may have diagnostic and prognostic value in infectious diseases.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3