Isolation of cold-sensitive mutants of measles virus from persistently infected murine neuroblastoma cells

Author:

Rager-Zisman B,Egan J E,Kress Y,Bloom B R

Abstract

Clone NS20Y of the mouse neuroblastoma C1300 was infected with wild-type Edmonston measles virus, and, after a transition to a carrier culture, became persistently infected. Persistently infected clones were derived and characterized morphologically by the appearance of multinucleate giant cells and nucleocapsid matrices in cytoplasm and nucleus, but very few budding virus particles. Antimeasles antibodies markedly suppressed the expression of viral antigens and giant cells, and the effect was totally reversible. When the cells were cultured at 33 degrees C, the number of giant cells began to diminish and ultimately disappeared; in contrast, when cultured at 39 degrees C, the cultures invariably lysed. Yields at 33 degrees C were ca. 2 logs lower than those at 39 degrees C. Cells cultured at 33 degrees C produced relatively high levels of interferon, whereas those at 39 degrees C produced little or no interferon. When the persistently infected cultures were exposed to anti-interferon alpha/beta serum at a nonpermissive temperature, there was a marked increase in multinucleate cells, suggesting that maintenance of the persistence state and its regulation by temperature may be related to the production of interferon. Viral isolates from cells cultured at 39 degrees C were obtained, and 90% of viral clones were found to be cold sensitive. Complementation studies with different viral clones indicated that the cold-sensitive defect was probably associated with the same genetic function. Western blot analysis of the persistently infected cells indicated a significant diminution and expression of all measles-specific proteins at a nonpermissive temperature. Infection of NS20Y neuroblastoma cells with the cold-sensitive virus isolates resulted in the development of an immediate persistent infection, whereas infection of Vero or HeLa cells resulted in a characteristic lytic infection, suggesting that the cold-sensitive mutants may be selected or adapted for persistent infection in cells of neural origin.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3