Extracellular Arginine Aminopeptidase from Streptococcus gordonii FSS2

Author:

Goldstein J. M.1,Nelson D.2,Kordula T.3,Mayo J. A.1,Travis J.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia

2. Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York

3. Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio

Abstract

ABSTRACT Streptococcus gordonii is a primary etiological agent in the development of subacute bacterial endocarditis (SBE), producing thrombus formation and tissue damage on the surfaces of heart valves. This is ironic, considering its normal role as a benign inhabitant of the oral microflora. However, strain FSS2 of S. gordonii has been found to produce several extracellular aminopeptidase- and fibrinogen-degrading activities during growth in a pH-controlled batch culture. In this report, we describe the purification, characterization, and partial cloning of a predicted serine class arginine aminopeptidase (RAP) with some cysteine class characteristics. Isolation of this enzyme by anion-exchange, gel filtration, and isoelectric focusing chromatography yielded a protein monomer of approximately 70 kDa, as shown by matrix-assisted laser desorption ionization, gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis under denaturing conditions. Nested-PCR cloning enabled the isolation of a 324-bp-long DNA fragment encoding the 108-amino-acid N terminus of RAP. Culture activity profiles and N-terminal sequence analysis indicated the export of this protein from the cell surface. Homology was found with a putative dipeptidase from Streptococcus pyogenes and nonspecific dipeptidases from Lactobacillus helveticus and Lactococcus lactis . We believe that RAP may serve as a critical factor for arginine acquisition during nutrient stress in vivo and also in the proteolysis of host proteins and peptides during SBE pathology.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3