The Anabaena sp. Strain PCC 7120 Gene all2874 Encodes a Diguanylate Cyclase and Is Required for Normal Heterocyst Development under High-Light Growth Conditions

Author:

Neunuebel M. Ramona1,Golden James W.1

Affiliation:

1. Department of Biology, Texas A&M University, College Station, Texas

Abstract

ABSTRACT The genome of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 harbors 14 genes containing a GGDEF diguanylate cyclase domain. We found that inactivation of one of these genes, all2874, caused abnormal heterocyst development. The all2874 mutant showed a pronounced reduction in heterocyst frequency during diazotrophic growth and reduced vegetative cell size compared to the wild type. The severity of the mutant phenotype varied with light intensity; at high light intensity, the mutant phenotype was accentuated, whereas at low light intensity the phenotype was similar to wild type. Under high-light growth conditions, the initial heterocyst frequency and pattern for the all2874 mutant were normal, but within 4 days following nitrogen step-down, many intervals between heterocysts increased to as many as 200 vegetative cells, whereas in the wild type the intervals were less than 25 vegetative cells. Filaments containing these unusually long vegetative cell intervals between heterocysts also contained intervals of normal length. An all2874 mutant strain carrying a P patS - gfp transcriptional reporter fusion failed to show normal upregulation of the reporter, which indicates that the decrease in heterocyst frequency is due to an early block in differentiation before induction of the patS gene, which in the wild type takes place 8 h after nitrogen step-down. Genetic epistasis experiments suggest that All2874 acts upstream of the master regulator HetR in differentiating cells. We also showed that purified All2874 functions as a diguanylate cyclase in vitro. We hypothesize that All2874 is required for the normal regulation of heterocyst frequency under high-light growth conditions.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3