HetF defines a transition point from commitment to morphogenesis during heterocyst differentiation in the cyanobacterium Anabaena sp. PCC 7120

Author:

Xing Wei‐Yue1,Liu Jing1,Zhang Cheng‐Cai1ORCID

Affiliation:

1. Key Laboratory of Algal Biology Institute of Hydrobiology, Chinese Academy of Sciences Wuhan Hubei People's Republic of China

Abstract

AbstractThe filamentous cyanobacterium Anabaena sp. PCC 7120 is able to form heterocysts for nitrogen fixation. Heterocyst differentiation is initiated by combined‐nitrogen deprivation, followed by the commitment step during which the developmental process becomes irreversible. Mature heterocysts are terminally differentiated cells unable to divide, and cell division is required for heterocyst differentiation. Previously, we have shown that the HetF protease regulates cell division and heterocyst differentiation by cleaving PatU3, which is an inhibitor for both events. When hetF is required during the developmental program remains unknown. Here, by controlling the timing of hetF expression during heterocyst differentiation, we provide evidence that hetF is required just before the beginning of heterocyst morphogenesis. Consistent with this finding, transcriptome data show that most of the genes known to be involved in the early step (such as hetR and ntcA) or the commitment step (such as hetP and hetZ) of heterocyst development could be expressed in the ΔhetF mutant. In contrast, most of the genes involved in heterocyst morphogenesis and nitrogen fixation remain repressed in the mutant. These results indicated that in the absence of hetF, heterocyst differentiation is able to be initiated and proceeds to the stage just before heterocyst envelope formation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Molecular Biology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3