Affiliation:
1. DDL Diagnostic Laboratory, Rijswijk, The Netherlands
2. GlaxoSmithKline Vaccines, Rixensart, Belgium
Abstract
ABSTRACT
Human papillomavirus (HPV) epidemiological and vaccine studies require highly sensitive HPV detection and genotyping systems. To improve HPV detection by PCR, the broad-spectrum L1-based SPF
10
PCR DNA enzyme immunoassay (DEIA) LiPA system and a novel E6-based multiplex type-specific system (MPTS123) that uses Luminex xMAP technology were combined into a new testing algorithm. To evaluate this algorithm, cervical swabs (
n
= 860) and cervical biopsy specimens (
n
= 355) were tested, with a focus on HPV types detected by the MPTS123 assay (types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 6, and 11). Among the HPV-positive samples, identifications of individual HPV genotypes were compared. When all MPTS123 targeted genotypes were considered together, good overall agreement was found (κ = 0.801, 95% confidence interval [CI], 0.784 to 0.818) with identification by SPF
10
LiPA, but significantly more genotypes (
P
< 0.0001) were identified by the MPTS123 PCR Luminex assay, especially for HPV types 16, 35, 39, 45, 58, and 59. An alternative type-specific assay was evaluated that is based on detection of a limited number of HPV genotypes by type-specific PCR and a reverse hybridization assay (MPTS12 RHA). This assay showed results similar to those of the expanded MPTS123 Luminex assay. These results confirm the fact that broad-spectrum PCRs are hampered by type competition when multiple HPV genotypes are present in the same sample. Therefore, a testing algorithm combining the broad-spectrum PCR and a range of type-specific PCRs can offer a highly accurate method for the analysis of HPV infections and diminish the rate of false-negative results and may be particularly useful for epidemiological and vaccine studies.
Publisher
American Society for Microbiology