Propionate catabolism in Salmonella typhimurium LT2: two divergently transcribed units comprise the prp locus at 8.5 centisomes, prpR encodes a member of the sigma-54 family of activators, and the prpBCDE genes constitute an operon

Author:

Horswill A R1,Escalante-Semerena J C1

Affiliation:

1. Department of Bacteriology, University of Wisconsin-Madison, 53706-1567, USA.

Abstract

We present the initial genetic and biochemical characterization of the propionate (prp) locus at 8.5 centisomes of the Salmonella typhimurium LT2 chromosome (T. A. Hammelman et al., FEMS Microbiol. Lett. 137: 233-239, 1996). In this paper, we report the nucleotide sequences of two divergently transcribed transcriptional units. One unit is comprised of the prpR gene (1,626 bp) encoding a member of the sigma-54 family of transcriptional activators; the second unit contains an operon of four genes designated prpB (888 bp), prpC (1,170 bp), prpD (1,452 bp), and prpE (1,923 bp). The heme biosynthetic gene hemB was shown by DNA sequencing to be located immediately downstream of the prpBCDE operon; hemB is divergently transcribed from prpBCDE and is separated from prpE by a 66-bp gap. In addition, we demonstrate the involvement of PrpB, PrpC, and PrpD in propionate catabolism by complementation analysis of mutants using plasmids carrying a single prp gene under the control of the arabinose-responsive P(BAD) promoter. Expression of prpB to high levels was deleterious to the growth of a prp+ strain on minimal medium supplemented with propionate as a carbon and energy source. We also report the cloning and overexpression of prpB, prpC, prpD, and prpE in the T7 system. PrpB, PrpC, PrpD, and PrpE had molecular masses of ca. 32, ca. 44, ca. 53, and ca. 70 kDa, respectively. PrpB showed homology to carboxyphosphonoenolpyruvate phosphonomutase of Streptomyces hygroscopicus and to its homolog in the carnation Dianthus caryophyllus; PrpC was homologous to both archaeal and bacterial citrate synthases; PrpD showed homology to yeast and Bacillus subtilis proteins of unknown function; PrpE showed homology to acetyl coenzyme A synthetases. We identified a sigma-54 (RpoN)-dependent promoter with a consensus RpoN binding site upstream of the initiating methionine codon of prpB, the promoter-proximal gene of the prp operon. Consistent with this finding, an rpoN prp+ mutant failed to use propionate as carbon and energy source. Finally, we report the location of MudI1734 elements inserted in prpC or prpD and of a Tn10delta16delta17 element in prpB and provide genetic evidence supporting the conclusion that the prpBCDE genes constitute an operon.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference44 articles.

1. Basic local alignment search tool;Altschul S. F.;J. Mol. Biol.,1990

2. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1989. Current protocols in molecular biology vol. 1. Greene Publishing Associates and Wiley-Interscience New York N.Y.

3. Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives;Bartolomé B.;Gene,1991

4. Rapid mapping in Salmonella typhimurium with Mud-P22 prophages;Benson N. R.;J. Bacteriol.,1992

5. Davis R. W. D. Botstein and J. R. Roth. 1980. A manual for genetic engineering: advanced bacterial genetics. Cold Spring Harbor Laboratory Cold Spring Harbor N.Y.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3