Lack of functional complementation between Bordetella pertussis filamentous hemagglutinin and Proteus mirabilis HpmA hemolysin secretion machineries

Author:

Jacob-Dubuisson F1,Buisine C1,Willery E1,Renauld-Mongénie G1,Locht C1

Affiliation:

1. INSERM U447, Institut Pasteur de Lille, France.

Abstract

The gram-negative bacterium Bordetella pertussis has adapted specific secretion machineries for each of its major secretory proteins. In particular, the highly efficient secretion of filamentous hemagglutinin (FHA) is mediated by the accessory protein FhaC. FhaC belongs to a family of outer membrane proteins which are involved in the secretion of large adhesins or in the activation and secretion of Ca2+-independent hemolysins by several gram-negative bacteria. FHA shares with these hemolysins a 115-residue-long amino-proximal region essential for its secretion. To compare the secretory pathways of these hemolysins and FHA, we attempted functional transcomplementation between FhaC and the Proteus mirabilis hemolysin accessory protein HpmB. HpmB could not promote the secretion of FHA derivatives. Likewise, FhaC proved to be unable to mediate secretion and activation of HpmA, the cognate secretory partner of HpmB. In contrast, ShlB, the accessory protein of the closely related Serratia marcescens hemolysin, was able to activate and secrete HpmA. Two invariant asparagine residues lying in the region of homology shared by secretory proteins and shown to be essential for the secretion and activation of the hemolysins were replaced in FHA by site-directed mutagenesis. Replacements of these residues indicated that both are involved in, but only the first one is crucial to, FHA secretion. This slight discrepancy together with the lack of functional complementation demonstrates major differences between the hemolysins and FHA secretion machineries.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3