Bordetella filamentous hemagglutinin and adenylate cyclase toxin interactions on the bacterial surface are consistent with FhaB-mediated delivery of ACT to phagocytic cells

Author:

Nash Zachary M.1,Inatsuka Carol S.2,Cotter Peggy A.12ORCID,Johnson Richard M.1ORCID

Affiliation:

1. Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA

2. Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA

Abstract

ABSTRACT Bordetella species that cause respiratory infections in mammals include B. pertussis , which causes human whooping cough, and B. bronchiseptica , which infects nearly all mammals. Both bacterial species produce filamentous hemagglutinin (FhaB) and adenylate cyclase toxin (ACT), prominent surface-associated and secreted virulence factors that contribute to persistence in the lower respiratory tract by inhibiting clearance by phagocytic cells. FhaB and ACT proteins interact with themselves, each other, and host cells. Using immunoblot analyses, we showed that ACT binds to FhaB on the bacterial surface before it can be detected in culture supernatants. We determined that SphB1, a surface protease identified based on its requirement for FhaB cleavage, is also required for ACT cleavage, and we determined that the presence of ACT blocks SphB1-dependent and -independent cleavage of FhaB, but the presence of FhaB does not affect SphB1-dependent cleavage of ACT. The primary SphB1-dependent cleavage site on ACT is proximal to ACT’s active site, in a region that is critical for ACT activity. We also determined that FhaB-bound ACT on the bacterial surface can intoxicate host cells producing CR3, the receptor for ACT. In addition to increasing our understanding of FhaB, ACT, and FhaB-ACT interactions on the Bordetella surface, our data are consistent with a model in which FhaB functions as a novel toxin delivery system by binding to ACT and allowing its release upon binding of ACT to its receptor, CR3, on phagocytic cells. IMPORTANCE Bacteria need to control the variety, abundance, and conformation of proteins on their surface to survive. Members of the Gram-negative bacterial genus Bordetella include B. pertussis , which causes whooping cough in humans, and B. bronchiseptica , which causes respiratory infections in a broad range of mammals. These species produce two prominent virulence factors, the two-partner secretion (TPS) effector FhaB and adenylate cyclase toxin (ACT), that interact with themselves, each other, and host cells. Here, we determined that ACT binds FhaB on the bacterial surface before being detected in culture supernatants and that ACT bound to FhaB can be delivered to eukaryotic cells. Our data are consistent with a model in which FhaB delivers ACT specifically to phagocytic cells. This is the first report of a TPS system facilitating the delivery of a separate polypeptide toxin to target cells and expands our understanding of how TPS systems contribute to bacterial pathogenesis.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3