Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines

Author:

Strahl C1,Blackburn E H1

Affiliation:

1. Department of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA.

Abstract

The ribonucleoprotein telomerase, a specialized cellular reverse transcriptase, synthesizes one strand of the telomeric DNA of eukaryotes. We analyzed telomere maintenance in two immortalized human cell lines: the B-cell line JY616 and the T-cell line Jurkat E6-1, and determined whether known inhibitors of retroviral reverse transcriptases could perturb telomere lengths and growth rates of these cells in culture. Dideoxyguanosine (ddG) caused reproducible, progressive telomere shortening over several weeks of passaging, after which the telomeres stabilized and remained short. However, the prolonged passaging in ddG caused no observable effects on cell population doubling rates or morphology. Azidothymidine (AZT) caused progressive telomere shortening in some but not all T- and B-cell cultures. Telomerase activity was present in both cell lines and was inhibited in vitro by ddGTP and AZT triphosphate. Prolonged passaging in arabinofuranyl-guanosine, dideoxyinosine (ddI), dideoxyadenosine (ddA), didehydrothymidine (d4T), or phosphonoformic acid (foscarnet) did not cause reproducible telomere shortening or decreased cell growth rates or viabilities. Combining AZT, foscarnet, and/or arabinofuranyl-guanosine with ddG did not significantly augment the effects of ddG alone. Strikingly, with or without inhibitors, telomere lengths were often highly unstable in both cell lines and varied between parallel cell cultures. We propose that telomere lengths in these T- and B-cell lines are determined by both telomerase and telomerase-independent mechanisms.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference49 articles.

1. Telomeric repeat from T. thermophila cross hybridizes with human telomeres;Allshire R. C.;Nature (London),1988

2. Growth of chromosome ends in multiplying trypanosomes;Bernards A.;Nature (London),1983

3. Structure and function of telomeres;Blackburn E. H.;Nature (London),1991

4. Blackburn E. H. 1993. Telomerase p. 557-576. In R. F. Gesteland and J. F. Atkins (ed.) The RNA world. Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y.

5. Telomeres: no end in sight;Blackburn E. H.;Cell,1994

Cited by 233 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3