MOLECULAR DOCKING AND MOLECULAR DYNAMICS SIMULATIONS INHIBITION AGAINST OF HUMAN TELOMERASE BY NUCLEOSIDE AND NON-NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS (NRTIs/NNRTIs)

Author:

Konyar Dilan1ORCID,Muhammed Muhammed Tılahun2ORCID

Affiliation:

1. DICLE UNIVERSITY, FACULTY OF PHARMACY

2. SULEYMAN DEMIREL UNIVERSITY, FACULTY OF PHARMACY

Abstract

Objective: This study investigated the anticancer effects of nucleoside and non-nucleoside reverse transcriptase inhibitors drugs by computational methods. The study aimed to evaluate the binding capacity of these drugs on the telomerase essential N-terminal (TEN) domain of telomerase reverse transcriptase (TERT). Molecular docking was used to assess the drugs' binding potential to the TEN domain. The stability of the protein-drug combination obtained from the docking method was assessed using molecular dynamics (MD) modeling. Material and Method: The TEN domain of TERT's crystal structure was obtained from the Protein Data Bank (PDB). The crystal structure identified by the PDB code 2B2A has a resolution of 2.2 Å. The molecular docking was performed using AutoDock Vina. The complexes were visualized using Biovia Discovery Studio. The MD simulation was conducted using GROMACS 2020 as indicated. An MD simulation was conducted for 200 ns on both the complexes and the free protein. The RMSD (root mean square deviation) of the protein and the molecules in relation to the protein, RMSF (root mean square fluctuation), and Rg (radius of gyration) were shown via Qt Grace. Result and Discussion: Doravirine, Etravirine, Rilpivirine showed higher binding affinity to the TEN domain compared to the reference TERT inhibitor, BIBR1532, based on the docking investigation. The MD simulation analysis showed that the protein-Doravirine complex had the highest stability in remaining within the protein's binding pocket. On the contrary, the protein-Rilpivirine complex decreased stability, potentially causing the ligand to not stay within the binding site. Doravirine was found to inhibit the TEN domain in the computational study. Therefore, the design and synthesis of novel doravirin derivatives is being considered because of the potential anticancer activity of doravirin in inhibiting the TEN domain of TERT.

Publisher

Ankara Universitesi Eczacilik Fakultesi Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3