Identification of the mitogen-activated protein kinase phosphorylation sites on human Sos1 that regulate interaction with Grb2

Author:

Corbalan-Garcia S1,Yang S S1,Degenhardt K R1,Bar-Sagi D1

Affiliation:

1. Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794-8621, USA.

Abstract

The Son of sevenless proteins (Sos) are guanine nucleotide exchange factors involved in the activation of Ras by cytoplasmic and receptor tyrosine kinases. Growth factor stimulation rapidly induces the phosphorylation of Sos on multiple serine and threonine sites. Previous studies have demonstrated that growth factor-induced Sos phosphorylation occurs at the C-terminal region of the protein and is mediated, in part, by mitogen-activated protein (MAP) kinase. In this report, we describe the identification of five MAP kinase sites (S-1137, S-1167, S-1178, S-1193, and S-1197) on hSos1. We demonstrate that four of these sites, S-1132, S-1167, S-1178, and S-1193, become phosphorylated following growth factor stimulation. The MAP kinase phosphorylation sites are clustered within a region encompassing three proline-rich SH3-binding sites in the C-terminal domain of hSos1. Replacing the MAP kinase phosphorylation sites with alanine residues results in an increase in the binding affinity of Grb2 to hSos1. Interestingly, hSos2 contains only one MAP kinase phosphorylation site and, as demonstrated previously, has an increased affinity toward Grb2 compared with hSos1. These results suggest a role for MAP kinase in the regulation of Grb2-Sos interactions. Since the binding of Grb2 is important for Sos function, the phosphorylation-dependent modulation of Grb2-Sos association may provide a means of controlling Ras activation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3