Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems

Author:

Compeau G1,Al-Achi B J1,Platsouka E1,Levy S B1

Affiliation:

1. Department of Molecular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111.

Abstract

The fate of spontaneous chromosomal rifampin-resistant (Rifr) mutants of Pseudomonas putida and Pseudomonas fluorescens in sterile and live organic soil from which they were isolated was studied. In sterile native-soil assays, a Rifr mutant of P. putida showed no decrease in competitive fitness when compared with the wild-type parent. However, mutants of P. fluorescens were of two general categories. Group 1 showed no difference from the wild type in terms of growth rate, competitive fitness, and membrane protein composition. Group 2 showed a slower growth rate in both minimal and enriched media and an altered membrane protein profile. These mutants also demonstrated decreased competitive fitness compared with the wild-type strain. In live soil, the Rifr P. putida strain persisted throughout the 38-day test period with a decay rate of 0.7 log10 CFU/g of soil per 10 days. A group 1 Rifr P. fluorescens mutant maintained its inoculated titer for 7 to 10 days and then decayed at a rate of 0.2 to 0.4 log10 CFU/g of soil per 10 days. A group 2 Rifr P. fluorescens mutant remained at its titer for 1 to 5 days before decaying at a two- to threefold-faster rate. These findings indicate that rifampin resistance may not be an innocuous mutation in some pseudomonads and that marked strains should be compared with wild-type parents before being used as monitors of parental strain survival. Colonization of sterile soil with either the wild-type or mutant strain precluded normal colonization of the second added strain.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3