The region of a Bacteroides conjugal chromosomal tetracycline resistance element which is responsible for production of plasmidlike forms from unlinked chromosomal DNA might also be involved in transfer of the element

Author:

Stevens A M1,Shoemaker N B1,Salyers A A1

Affiliation:

1. Department of Microbiology, University of Illinois, Urbana 61801.

Abstract

Large (greater than 50 kilobases) conjugal chromosomal tetracycline resistance (Tcr) elements have been found in many human colonic Bacteroides strains. Recently, N. B. Shoemaker and A. A. Salyers (J. Bacteriol, 170:1651-1657, 1988) reported that some of these Tcr elements appeared to mediate production of plasmidlike forms, NBU1 and NBU2, from an unlinked region of the chromosome of Bacteroides uniformis 0061. Production of the plasmidlike forms and the transfer frequency of the Tcr elements were both enhanced by preexposure to tetracycline. Thus it appeared that genes involved in production of plasmidlike forms (Plf activity) might be coregulated with transfer genes and that Plf activity might have a role in transfer of the Tcr elements. By screening subclones of a Tcr element, Tcr Emr DOT, we have shown that the genes necessary for Plf activity on the Tcr element are within a 10-kilobase region adjacent to the Tcr gene. Subclones of this region were then used to construct insertional gene disruptions in a Tcr element, Tcr ERL, which is closely related to the Tcr Emr DOT element. Two of the disruption mutants were Plf-. Both had reduced transfer frequencies, one (omega RDB2) 10(2)-fold lower than that of the wild-type element and the other (omega RDBT) 10(4)-fold lower. omega RDB2 was also deficient in the ability to mobilize coresident plasmids, whereas omega RDBT exhibited nearly wild-type mobilization activity. The phenotypes of the mutants indicate that there are at least two genes necessary for Plf activity and that both may be involved in transfer of the element. The third disruption mutant (omegaRDB1), which expressed Plf constitutively, also had a transfer frequency 10(2) -fold lower than that of the wild-type element and was deficient in mobilization of coresident plasmids. The relationship between Plf genes and transfer, therefore, appears to be a complex one.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3