Use of targeted insertional mutagenesis to determine whether chondroitin lyase II is essential for chondroitin sulfate utilization by Bacteroides thetaiotaomicron

Author:

Guthrie E P,Salyers A A

Abstract

Bacteroides thetaiotaomicron produces two inducible chondroitin lyases (I and II) when it is grown on chondroitin sulfate. Both enzymes have very similar biochemical properties. To determine whether both enzymes are required for growth on chondroitin sulfate, we constructed a Bacteroides suicide vector, pE3-1, and used it to create an insertional mutation that interrupts the chondroitin lyase II gene of Bacteroides thetaiotaomicron. pE3-1 contains a 4.4-kilobase cryptic B. eggerthii plasmid (pB8-51), the Escherichia coli cloning vector pBR328, and the EcoRI D fragment from the conjugative B. fragilis plasmid pBF4. A 0.8-kilobase fragment from the center of the B. thetaiotaomicron chondroitin lyase II gene was inserted in pE3-1 to create pEG817. Although, pEG817 is stably maintained in E. coli and can be mobilized into B. thetaiotaomicron by the IncP plasmid R751, pEG817 is not maintained as a plasmid in Bacteroides spp. When pEG817 was mobilized into B. thetaiotaomicron, with selection for a drug marker on pEG817, transconjugants were obtained which had pEG817 inserted into the chondroitin lyase II gene. Western blot analysis was used to confirm that intact chondroitin lyase II is not produced in the mutant. The mutant was able to utilize chondroitin sulfate as a sole source of carbon, although no active chondroitin lyase II was produced. Thus chondroitin lyase I alone appears to be sufficient for growth on chondroitin sulfate. The mutant also had some minor changes in its outer membrane protein profile. However, there was no evidence that any of the major chondroitin sulfate-associated polypeptides in the outer membrane were affected by the insertion in the chondroitin lyase II gene.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3