Affiliation:
1. Department of Microbiology and Immunology, Chandler Medical Center, University of Kentucky, Lexington 40536-0084.
Abstract
The low-Ca2+ response (Lcr) of Yersinia includes a regulatory cascade and a set of virulence-related proteins, one of which is the V antigen. The regulatory genes modulate both bacterial growth and expression of the virulence-related proteins in response to temperature and the presence of Ca2+ and nucleotides. In this study we defined a new Lcr locus, lcrR, in Yersinia pestis KIM. An lcrR mutant, obtained by insertion mutagenesis, failed to grow at 37 degrees C whether Ca2+ was present or not. However, it grew normally in the presence of ATP, showing that the Ca2(+)- and nucleotide-responsive mechanisms are separate in Y. pestis. The lcrR mutant was avirulent in mice, probably due to its compromised growth at 37 degrees C. beta-Galactosidase measurements and Northern (RNA blot) analysis revealed that lcrR transcription was regulated primarily by temperature. The DNA sequence of the lcrR locus contained a single open reading frame of 441 bases that could encode a protein with a molecular weight of 16,470 and a pI of 10.73. Expression of an lcrR-containing clone in Escherichia coli yielded a 16,000-molecular-weight protein. At 37 degrees C, the lcrR mutant strongly expressed V antigen and initiated lcrGVH transcription whether Ca2+ was present or not, indicating that this mutant had lost the transcriptional downregulation of lcrGVH shown by the parent in the presence of Ca2+. In the absence of Ca2+, the mutant failed to express LcrG, even though lcrGVH mRNA initiated upstream of lcrG at the normal sites. These data suggest that the lcrR locus is necessary for the regulation of LcrG expression in the absence of Ca2+. Therefore, this locus has a dual regulatory role in the low-Ca2+ response.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献