Effect of γ-Irradiation on the Growth and Yield Response of Three Varieties of Pea (Pisum spp.)

Author:

Sarri Efi1ORCID,Samolada Styliani-Maria1,Katsileros Anastasios1,Tomlekova Nasya2ORCID,Abraham Eleni M.3ORCID,Tani Eleni1ORCID

Affiliation:

1. Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece

2. Molecular Biology Laboratory, Department of Breeding, Variety Maintenance and Introduction, Maritsa Vegetable Crops Research Institute, 4003 Plovdiv, Bulgaria

3. Department of Forestry and Natural Environment, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

In this study, three pea varieties (Pisum sativum), including one field pea variety ‘Dodoni’, and two varieties of garden peas ‘Early Onward’ and ‘Rondo’, were irradiated with 100 Gy gamma rays. The irradiated seeds were then cultivated in the experimental field of the Plant Breeding and Agricultural Experimentation Laboratory of the Agricultural University of Athens, in the period of 2021–2022, affording them the chance to reveal their full potential under natural environmental conditions. The M1 generation plants were compared to non-irradiated plants in terms of their agro-morphological traits. The results indicate a statistically significant difference on several traits: plant height, plant weight, dry biomass, pod length, and the number of seeds per pod. On the other hand, no significant difference was detected in: plant growth rate, the number of shoots and leaves per plant, pods and seed yield per plant, and 1000-seed weight. However, the three pea varieties did not seem to respond in the same way. The M1 generation plants of the two garden pea varieties (‘Early Onward’ and ‘Rondo’) showed a shorter plant height and pod length than their corresponding non-irradiated plants. Likewise, the number of seeds per pod for both ‘Early Onward’ and ‘Dodoni’ was lower for the mutant plants than it was for the plants used as the control. In contrast, mutant plants of the ‘Dodoni’ variety indicated a greater plant weight and dry biomass per plant compared to non-irradiated plants. Finally, the correlation found between agronomic traits was the same regardless of the treatment (control and mutant plants). The number of seeds per plant indicated a positive correlation with the pods per plant and plant weight. Similarly, the dry biomass was positively correlated with plant weight, while being negatively correlated with pod length. Thus, the results obtained in the present study clearly indicate that there were differences between seeds irradiated with gamma rays and non-irradiated seeds in terms of their overall performance and various quantitative pea traits, which should to be further investigated in M2 and the following generations. Peas have gathered a significant market interest and demand. Given their narrow genetic base, we employed gamma irradiation technology, which can be effectively integrated with omics technologies in future generations. This study underscores the necessity to explore performance characteristics and integrate them with quality traits. Our findings reveal that each generation exhibits unique attributes, and specifically, provide a valuable foundation for identifying valuable characteristics for future breeding programs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3