Affiliation:
1. Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.
Abstract
Mutations in the gene encoding the adenovirus (Ad) early region 1B 19-kDa protein (the 19K gene) result in multiple phenotypic effects upon infection of permissive human cells. It has been reported, for example, that Ad type 2 (Ad2) and Ad5 with mutations in the 19K gene (19K-defective mutants) have a marked growth advantage compared with wild-type virus in human diploid WI38 cells (E. White, B. Faha, and B. Stillman, Mol. Cell. Biol. 6:3763-3773, 1986), and it was proposed that this host range phenotype stems from the large increase in viral early gene expression reported to occur in the mutant-infected cells. These observations gave rise to the hypothesis that the 19-kDa protein (the 19K protein) normally functions as a negative regulator of Ad early gene expression and growth. We have tested this hypothesis and find that Ad5 and Ad12 wild-type viruses grow as efficiently as their respective 19K-defective mutants, in1 and dl337 and pm700 and in700, in WI38 and other human cell types. Neither the accumulation of E1A cytoplasmic mRNAs nor the synthesis of E1A and other viral early proteins in these cells is altered as a result of these mutations in the 19K gene, and we conclude that the 19K protein does not play an essential role in regulating viral early gene expression or viral growth in human cells.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献