Effect on transformation of mutations in the early region 1b-encoded 21- and 55-kilodalton proteins of adenovirus 5

Author:

Babiss L E,Fisher P B,Ginsberg H S

Abstract

It is well established that the adenovirus 5 genes responsible for the initiation and maintenance of the transformed cell reside in the early region 1a and 1b genes, but it remains unclear how the polypeptides encoded in these genes mediate their functions. To probe the function of the early region 1b-encoded 55- and 21-kilodalton (kd) polypeptides during this process, a series of viral mutants was engineered so that they contained deletions or insertions at 5.4, 5.7, 7.9, or 9.6 map units. By means of either an overlap recombination procedure involving H5dl314 (delta 3.7 to 4.6 map units) cleaved with ClaI, or a marker rescue procedure involving H5dl312 (delta 1.2 to 3.8 map units), viral mutants were isolated by their ability to produce plaques on KB cell line 18 cells, which constitutively express only viral early region 1b functions. DNA sequence analysis confirmed that the series of mutants generated differed in their abilities to express the 21- or the 55-kd polypeptides, or both. Upon infection of cloned rat embryo fibroblast cells with viruses containing mutations affecting the 55-kd protein, the transformation frequency decreased as the size of the predicted truncated polypeptide decreased. Although all of the foci generated by the 55-kd protein mutants were indistinguishable from the foci induced by wild-type virus, they displayed an inefficient ability to grow in soft agar, again in relation to the size of the truncated polypeptide. In contrast, if cloned rat embryo fibroblast cells were transfected with viral DNA, the defectiveness in transformation observed after infection with virions was not as dramatic. However, all of the viruses containing 21-kd mutations were transformation defective, regardless of the mode by which the viral nucleic acid was introduced into the cell.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3