Author:
Brown D T,Westphal M,Burlingham B T,Winterhoff U,Doerfler W
Abstract
The structure and composition of the core of adenovirus type 2 were analyzed by electron microscopy and biochemical techniques after differential degradation of the virion by heat, by pyridine, or by sarcosyl treatment. In negatively stained preparations purified sarcosyl cores reveal spherical subunits of 21.6-nm diameter in the electron microscope. It is suggested that these subunits are organized as an icosahedron which has its axes of symmetry coincident with those of the viral capsid. The subunits are connected by the viral DNA molecule. The sarcosyl cores contain the viral DNA and predominantly the arginine/alanine-rich core polypeptide VII. When sarcosyl cores are spread on a protein film, tightly coiled particles are observed which gradually unfold giving rise to a rosette-like pattern due to the uncoiling DNA molecule. Completely unfolded DNA molecules are circular. Pyridine cores consist of the viral DNA and polypeptides V and VII. In negatively stained preparations of pyridine cores the subunit arrangement apparent in the sarcosyl cores is masked by an additional shell which is probably formed by polypeptide V. In freeze-cleaved preparations of the adenovirion two fracture planes can be recognized. One fracture plane probably passes between the outer capsid of the virion and polypeptide V exposing a subviral particle which corresponds to the pyridine core. The second fracture plane observed could be located between polypeptide V and the polypeptide VII-DNA complex, thus uncovering a subviral structure which corresponds to the sarcosyl core. In the sarcosyl core polypeptide VII is tightly bound to the viral DNA which is susceptible to digestion with DNase. The restriction endonuclease EcoRI cleaves the viral DNA in the sarcosyl cores into the six specific fragments. These fragments can be resolved on polyacrylamide-agarose gels provided the sarcosyl cores are treated with pronase after incubation with the restriction endonuclease. When pronase digestion is omitted, a complex of the terminal EcoRI fragments adenovirus DNA and protein can be isolated. From this complex the terminal DNA fragments can be liberated after pronase treatment. The complex described is presumably responsible for the circularization of the viral DNA inside the virion. The nature of the protein(s) involved in circle formation has not yet been elucidated.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology