Identification and Gene Expression Analysis of a Large Family of Transmembrane Kinases Related to the Gal/GalNAc Lectin in Entamoeba histolytica

Author:

Beck David L.1,Boettner Douglas R.1,Dragulev Bojan1,Ready Kim23,Nozaki Tomoyoshi45,Petri William A.123

Affiliation:

1. Departments of Microbiology

2. Medicine

3. Pathology, University of Virginia, Charlottesville, Virginia 22908-1340

4. Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640

5. Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 2-20-5 Akebonocho, Tachikawa, Tokyo 190-0012, Japan

Abstract

ABSTRACT We identified in the Entamoeba histolytica genome a family of over 80 putative transmembrane kinases (TMKs). The TMK extracellular domains had significant similarity to the intermediate subunit (Igl) of the parasite Gal/GalNAc lectin. The closest homolog to the E. histolytica TMK kinase domain was a cytoplasmic dual-specificity kinase, SplA, from Dictyostelium discoideum . Sequence analysis of the TMK family demonstrated similarities to both serine/threonine and tyrosine kinases. TMK genes from each of six phylogenetic groups were expressed as mRNA in trophozoites, as assessed by spotted oligoarray and real-time PCR assays, suggesting nonredundant functions of the TMK groups for sensing and responding to extracellular stimuli. Additionally, we observed changes in the expression profile of the TMKs in continuous culture. Antisera produced against the conserved kinase domain identified proteins of the expected molecular masses of the expressed TMKs. Confocal microscopy with anti-TMK kinase antibodies revealed a focal distribution of the TMKs on the cytoplasmic face of the trophozoite plasma membrane. We conclude that E. histolytica expresses members of each subgroup of TMKs. The presence of multiple receptor kinases in the plasma membrane offers for the first time a potential explanation of the ability of the parasite to respond to the changing environment of the host.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3