Live Cells Imaging and Comparative Phosphoproteomics Uncover Proteins from the Mechanobiome in Entamoeba histolytica

Author:

Jhingan Gagan Deep1,Manich Maria123ORCID,Olivo-Marin Jean-Christophe23,Guillen Nancy124

Affiliation:

1. Institut Pasteur, Cell Biology of Parasitism Unit, 75015 Paris, France

2. Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France

3. Centre National de la Recherche Scientifique, CNRS UMR3691, 75015 Paris, France

4. Centre National de la Recherche Scientifique, CNRS-ERL9195, 75015 Paris, France

Abstract

Entamoeba histolytica is a protozoan parasite and the causative agent of amoebiasis in humans. This amoeba invades human tissues by taking advantage of its actin-rich cytoskeleton to move, enter the tissue matrix, kill and phagocyte the human cells. During tissue invasion, E. histolytica moves from the intestinal lumen across the mucus layer and enters the epithelial parenchyma. Faced with the chemical and physical constraints of these diverse environments, E. histolytica has developed sophisticated systems to integrate internal and external signals and to coordinate cell shape changes and motility. Cell signalling circuits are driven by interactions between the parasite and extracellular matrix, combined with rapid responses from the mechanobiome in which protein phosphorylation plays an important role. To understand the role of phosphorylation events and related signalling mechanisms, we targeted phosphatidylinositol 3-kinases followed by live cell imaging and phosphoproteomics. The results highlight 1150 proteins, out of the 7966 proteins within the amoebic proteome, as members of the phosphoproteome, including signalling and structural molecules involved in cytoskeletal activities. Inhibition of phosphatidylinositol 3-kinases alters phosphorylation in important members of these categories; a finding that correlates with changes in amoeba motility and morphology, as well as a decrease in actin-rich adhesive structures.

Funder

French National Agency for Research

French parasitology consortium Labex ParaFrap

Labex IBEID

France-BioImaging infrastructure

PIA INCEPTION

Wellcome Trust-DBT India Alliance

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3