Differential Effects of Heated Perfusate on Morphology, Viability, and Dissemination of Staphylococcus epidermidis Biofilms

Author:

Beckwith Joanne K.12,VanEpps J. Scott32456,Solomon Michael J.12ORCID

Affiliation:

1. Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA

2. Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA

3. Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA

4. Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA

5. Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA

6. Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, USA

Abstract

Bacterial biofilms are a leading cause of medical device infections. Staphylococcus epidermidis is commonly responsible for these types of infections. With increasing occurrences of antibacterial resistance, there has been a new push to explore treatment options that augment traditional antibiotic therapies. Here, we show how thermal treatment can be applied to both degrade bacterial biofilms on substrates and impede the proliferation of cells that detach from them. Understanding the response of both surface-adhered and dispersed bacterial cells under thermal stress conditions is a foundational step toward the development of an in situ treatment/remediation method for biofilm growth in medical devices; such an application could use oscillatory flow of heated fluid in a catheter as an adjuvant to antibiotic treatment. The work furthermore provides new insight into the viability of disseminated biofilm material.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3