Simultaneous Cellulose Degradation and Electricity Production by Enterobacter cloacae in a Microbial Fuel Cell

Author:

Rezaei Farzaneh1,Xing Defeng2,Wagner Rachel2,Regan John M.2,Richard Tom L.1,Logan Bruce E.2

Affiliation:

1. Department of Agricultural and Biological Engineering

2. Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

ABSTRACT Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from many different biodegradable substrates. When cellulose is used as the substrate, electricity generation requires a microbial community with both cellulolytic and exoelectrogenic activities. Cellulose degradation with electricity production by a pure culture has not been previously demonstrated without addition of an exogenous mediator. Using a specially designed U-tube MFC, we enriched a consortium of exoelectrogenic bacteria capable of using cellulose as the sole electron donor. After 19 dilution-to-extinction serial transfers of the consortium, 16S rRNA gene-based community analysis using denaturing gradient gel electrophoresis and band sequencing revealed that the dominant bacterium was Enterobacter cloacae . An isolate designated E. cloacae FR from the enrichment was found to be 100% identical to E. cloacae ATCC 13047 T based on a partial 16S rRNA sequence. In polarization tests using the U-tube MFC and cellulose as a substrate, strain FR produced 4.9 ± 0.01 mW/m 2 , compared to 5.4 ± 0.3 mW/m 2 for strain ATCC 13047 T . These results demonstrate for the first time that it is possible to generate electricity from cellulose using a single bacterial strain without exogenous mediators.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3