Mechanistic Analysis of the Effect of Deamidation on the Immunogenicity of Anthrax Protective Antigen

Author:

Verma Anita1,Ngundi Miriam M.1,Burns Drusilla L.1

Affiliation:

1. Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA

Abstract

ABSTRACT The spontaneous modification of proteins, such as deamidation of asparagine residues, can significantly affect the immunogenicity of protein-based vaccines. Using a “genetically deamidated” form of recombinant protective antigen (rPA), we have previously shown that deamidation can decrease the immunogenicity of rPA, the primary component of new-generation anthrax vaccines. In this study, we investigated the biochemical and immunological mechanisms by which deamidation of rPA might decrease the immunogenicity of the protein. We found that loss of the immunogenicity of rPA vaccine was independent of the presence of adjuvant. We assessed the effect of deamidation on the immunodominant neutralizing B-cell epitopes of rPA and found that these epitopes were not significantly affected by deamidation. In order to assess the effect of deamidation on T-cell help for antibody production elicited by rPA vaccine, we examined the ability of the wild-type and genetically deamidated forms of rPA to serve as hapten carriers. We found that when wild-type and genetically deamidated rPA were modified to similar extents with 2,4-dinitrophenyl hapten (DNP) and then used to immunize mice, higher levels of anti-DNP antibodies were elicited by wild-type DNP-rPA than those elicited by the genetically deamidated DNP-rPA, indicating that wild-type rPA elicits more T-cell help than the genetically deamidated form of the protein. These results suggest that a decrease in the ability of deamidated rPA to elicit T-cell help for antibody production is a possible contributor to its lower immunogenicity.

Funder

Food and Drug Administration Intramural Research Program

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3