Genetic Analysis of the Nitrogen Assimilation Control Protein from Klebsiella pneumoniae

Author:

Rosario Christopher J.1,Janes Brian K.1,Bender Robert A.1

Affiliation:

1. Department of Molecular, Cellular, and Developmental Biology, the University of Michigan, Ann Arbor, Michigan 48109-1048

Abstract

ABSTRACT The nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae is a typical LysR-type transcriptional regulator (LTTR) in many ways. However, the lack of a physiologically relevant coeffector for NAC and the fact that NAC can carry out many of its functions as a dimer make NAC unusual among the LTTRs. In the absence of a crystal structure for NAC, we analyzed the effects of amino acid substitutions with a variety of phenotypes in an attempt to identify functionally important features of NAC. A substitution that changed the glutamine at amino acid 29 to alanine (Q29A) resulted in a NAC that was seriously defective in binding to DNA. The H26D substitution resulted in a NAC that could bind and repress transcription but not activate transcription. The I71A substitution resulted in a NAC polypeptide that remained monomeric. NAC tetramers can bind to both long and shorter binding sites (like other LTTRs). However, the absence of a coeffector to induce the conformational change needed for the switch from the former to the latter raised a question. Are there two conformations of NAC, analogous to the other LTTRs? The G217R substitution resulted in a NAC that could bind to the longer sites but had difficulty in binding to the shorter sites, and the I222R and A230R substitutions resulted in a NAC that could bind to the shorter sites but had difficulty in binding properly to the longer sites. Thus, there appear to be two conformations of NAC that can freely interconvert in the absence of a coeffector.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3