Changes of the Secondary Structure of the 5′ End of the Sindbis Virus Genome Inhibit Virus Growth in Mosquito Cells and Lead to Accumulation of Adaptive Mutations

Author:

Fayzulin Rafik1,Frolov Ilya1

Affiliation:

1. Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1019

Abstract

ABSTRACT Both the 5′ end of the Sindbis virus (SIN) genome and its complement in the 3′ end of the minus-strand RNA synthesized during virus replication serve as parts of the promoters recognized by the enzymes that comprise the replication complex (RdRp). In addition to the 5′ untranslated region (UTR), which was shown to be critical for the initiation of replication, another 5′ sequence element, the 51-nucleotide (nt) conserved sequence element (CSE), was postulated to be important for virus replication. It is located in the nsP1-encoding sequence and is highly conserved among all members of the Alphavirus genus. Studies with viruses containing clustered mutations in this sequence demonstrated that this RNA element is dispensable for SIN replication in cells of vertebrate origin, but its integrity can enhance the replication of SIN-specific RNAs. However, we showed that the same mutations had a deleterious effect on virus replication in mosquito cells. SIN with a mutated 51-nt CSE rapidly accumulated adaptive mutations in the nonstructural proteins nsP2 and nsP3 and the 5′ UTR. These mutations functioned synergistically in a cell-specific manner and had a stimulatory effect only on the replication of viruses with a mutated 51-nt CSE. Taken together, the results suggest the complex nature of interactions between nsP2, nsP3, the 5′ UTR, and host-specific protein factors binding to the 51-nt CSE and involved in RdRp formation. The data also demonstrate an outstanding potential of alphaviruses for adaptation. Within one passage, SIN can adapt to replication in cells of a vertebrate or invertebrate origin.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference49 articles.

1. Agapov, E. V., I. Frolov, B. D. Lindenbach, B. M. Prägai, S. Schlesinger, and C. M. Rice. 1998. Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc. Natl. Acad. Sci. USA95:12989-12994.

2. Brown, D. T., and L. D. Condreay. 1986. Replication of alphaviruses in mosquito cells, p. 171-207. In S. Schlesinger and M. J. Schlesinger (ed.), The Togaviridae and Flaviviridae. Plenum Press, New York, N.Y.

3. Chamberlain, R. W., and W. D. Sudia. 1961. Mechanisms of transmission of viruses by mosquitoes. Annu. Rev. Entomol.61:371-390.

4. DeTulleo, L., and T. Kirchhausen. 1998. The clathrin endocytic pathway in viral infection. EMBO J.17:4585-4593.

5. Ding, M., and M. J. Schlesinger. 1989. Evidence that Sindbis virus nsP2 is an autoprotease which processes the virus nonstructural polyprotein. Virology171:280-284.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3