ICP27 Selectively Regulates the Cytoplasmic Localization of a Subset of Viral Transcripts in Herpes Simplex Virus Type 1-Infected Cells

Author:

Pearson Angela1,Knipe David M.2,Coen Donald M.1

Affiliation:

1. Department of Biological Chemistry and Molecular Pharmacology

2. Department of Microbiology and Medical Genetics, Harvard Medical School, Boston, Massachusetts 02115

Abstract

ABSTRACT Evidence suggests that the herpes simplex virus regulatory protein ICP27 mediates the nuclear export of viral transcripts; however, the extent of this activity during infection is unclear. ICP27 is required for efficient expression of the long, leaky-late UL24 transcripts, but not for that of the short, early UL24 transcripts. We found that infection by an ICP27 -null mutant resulted in undetectable UL24 protein expression, which represented at least a 70-fold decrease relative to that of wild-type virus. Because lack of ICP27 had a greater effect on levels of UL24 protein than on transcripts, we examined its effect on subcellular localization of UL24 transcripts. In wild-type-infected cells, both short and long UL24 transcripts fractionated predominantly with the cytoplasm. However, in the absence of ICP27, greater than 50% of long UL24 transcripts were nuclear, while the percentage of short UL24 transcripts that were cytoplasmic was not reduced. These results also imply that the short UL24 transcripts are translated poorly. The effect of ICP27 on cytoplasmic localization of the long UL24 transcripts did not extend to other transcripts with which it shared a common 3′ end or to other transcripts tested, including gC and UL42 , whose overall expression is highly dependent on ICP27. Thus, the dual effects of ICP27 on mRNA accumulation and cytoplasmic localization are not always linked. These results identify viral transcripts that are dependent on ICP27 for efficient cytoplasmic localization during infection, but they also indicate the existence of ICP27-independent nuclear export pathways that are accessible to many viral transcripts during infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3