Genetic Evidence for an Alternative Citrate-Dependent Biofilm Formation Pathway in Staphylococcus aureus That Is Dependent on Fibronectin Binding Proteins and the GraRS Two-Component Regulatory System

Author:

Shanks Robert M. Q.1,Meehl Michael A.1,Brothers Kimberly M.1,Martinez Raquel M.1,Donegan Niles P.1,Graber Martha L.2,Cheung Ambrose L.1,O'Toole George A.1

Affiliation:

1. Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755

2. Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03766

Abstract

ABSTRACT We reported previously that low concentrations of sodium citrate strongly promote biofilm formation by Staphylococcus aureus laboratory strains and clinical isolates. Here, we show that citrate promotes biofilm formation via stimulating both cell-to-surface and cell-to-cell interactions. Citrate-stimulated biofilm formation is independent of the ica locus, and in fact, citrate represses polysaccharide adhesin production. We show that fibronectin binding proteins FnbA and FnbB and the global regulator SarA, which positively regulates fnbA and fnbB gene expression, are required for citrate's positive effects on biofilm formation, and citrate also stimulates fnbA and fnbB gene expression. Biofilm formation is also stimulated by several other tricarboxylic acid (TCA) cycle intermediates in an FnbA-dependent fashion. While aconitase contributes to biofilm formation in the absence of TCA cycle intermediates, it is not required for biofilm stimulation by these compounds. Furthermore, the GraRS two-component regulator and the GraRS-regulated efflux pump VraFG, identified for their roles in intermediate vancomycin resistance, are required for citrate-stimulated cell-to-cell interactions, but the GraRS regulatory system does not impact the expression of the fnbA and fnbB genes. Our data suggest that distinct genetic factors are required for the early steps in citrate-stimulated biofilm formation. Given the role of FnbA/FnbB and SarA in virulence in vivo and the lack of a role for ica -mediated biofilm formation in S. aureus catheter models of infection, we propose that the citrate-stimulated biofilm formation pathway may represent a clinically relevant pathway for the formation of these bacterial communities on medical implants.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3