Affiliation:
1. Immunology Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104-4268
Abstract
ABSTRACT
Previous studies have indicated that B cells make a significant contribution to the resolution of influenza virus infection. To determine how B cells participate in the control of the infection, we transferred intact, major histocompatibility complex class II (MHC-II)-negative or B-cell receptor (BCR)-transgenic spleen cells into B-cell-deficient and CD8
+
T-cell-depleted μMT mice, termed μMT(−8), and tested them for ability to recover from infection. μMT(−8) mice that received no spleen cells invariably succumbed to the infection within 20 days, indicating that CD4
+
T-cell activities had no significant therapeutic activity on their own; in fact, they were harmful and decreased survival time. Interestingly, however, they became beneficial in the presence of antiviral antibody (Ab). Injection of MHC-II
(−/−)
spleen cells, which can provide CD4
+
T-cell-independent (TI) but not T-cell-dependent (TD) activities, delayed mortality but only rarely resulted in clearance of the infection. By contrast, 80% of μMT(−8) mice injected with normal spleen cells survived and resolved the infection. Transfer of BCR-transgenic spleen cells, which contained ∼10 times fewer virus-specific precursor B cells than normal spleen cells, had no significant impact on the course of the infection. Taken together, the results suggest that B cells contribute to the control of the infection mainly through production of virus-specific Abs and that the TD Ab response is therapeutically more effective than the TI response. In addition, CD4
+
T cells appear to contribute, apart from promoting the TD Ab response, by improving the therapeutic activity of Ab-mediated effector mechanisms.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献