Int-B13, an Unusual Site-Specific Recombinase of the Bacteriophage P4 Integrase Family, Is Responsible for Chromosomal Insertion of the 105-Kilobase clc Element of Pseudomonas sp. Strain B13

Author:

Ravatn Roald1,Studer Sonja1,Zehnder Alexander J. B.1,Roelof van der Meer Jan1

Affiliation:

1. Swiss Federal Institute for Environmental Science and Technology (EAWAG) and Swiss Federal Institute for Technology (ETH), CH-8600 Dübendorf, Switzerland

Abstract

ABSTRACT Pseudomonas sp. strain B13 carries the clcRABDE genes encoding chlorocatechol-degradative enzymes on the self-transmissible 105-kb clc element. The element integrates site and orientation specifically into the chromosomes of various bacterial recipients, with a glycine tRNA structural gene ( glyV ) as the integration site. We report here the localization and nucleotide sequence of the integrase gene and the activity of the integrase gene product in mediating site-specific integration. The integrase gene ( int-B13 ) was located near the right end of the clc element. It consisted of an open reading frame (ORF) of maximally 1,971 bp with a coding capacity for 657 amino acids (aa). The full-length protein (74 kDa) was observed upon overexpression and sodium dodecyl sulfate-polyacrylamide gel electrophoresis separation. The N-terminal 430 aa of the predicted Int-B13 protein had substantial similarity to integrases from bacteriophages of the P4 family, but Int-B13 was much larger than P4-type integrases. The C-terminal 220 aa of Int-B13 were homologous to an ORF flanking a gene cluster for naphthalene degradation in Pseudomonas aeruginosa PaK1. Similar to the bacteriophages φR73 and P4, the clc element integrates into the 3′ end of the target tRNA gene. This target site was characterized from four different recipient strains into which the clc element integrated, showing sequence specificity of the integration. In Pseudomonas sp. strain B13, a circular form of the clc element, which carries an 18-bp DNA sequence identical to the 3′-end portion of glyV as part of its attachment site ( attP ), could be detected. Upon chromosomal integration of the clc element into a bacterial attachment site ( attB ), a functional glyV was reconstructed at the right end of the element. The integration process could be demonstrated in RecA-deficient Escherichia coli with two recombinant plasmids, one carrying the int-B13 gene and the attP site and the other carrying the attB site of Pseudomonas putida F1.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3