Diversity and evolution of an abundant ICE clc family of integrative and conjugative elements in Pseudomonas aeruginosa

Author:

Benigno Valentina1,Carraro Nicolas1,Sarton-Lohéac Garance1,Romano-Bertrand Sara2,Blanc Dominique S.3,van der Meer Jan Roelof1ORCID

Affiliation:

1. Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland

2. Hydrosciences Montpellier, IRD, CNRS, University of Montpellier, Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, Montpellier, France

3. Prevention and Infection Control Unit, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

Abstract

ABSTRACT Integrative and conjugative elements (ICEs) are widespread autonomous mobile DNA elements, containing the genes necessary for their excision, conjugative transfer, and insertion into a new host cell. ICEs can carry additional genes that are non-essential for their transfer but can confer adaptive phenotypes to the host. Our aim here was to better characterize the presence, distribution, and variation of ICEs related to the well-described ICE clc among Pseudomonas aeruginosa clinical isolates within a geographically restrained environment to understand the factors contributing to their evolution. We examined a total of 181 P . aeruginosa genome sequences obtained from patient or hospital environment isolates, most of which were obtained from a single hospital during 20 years of sampling. More than 90% of the isolates carried one or more ICE clc -like elements, with different degrees of conservation to the known ICE clc lifestyle and transfer genes. ICE clones closely matched their host clonal phylogeny, but not exclusively, indicating that both clonal evolution and ICE horizontal transfer are occurring in the hospital environment. ICEs from this singular hospital environment were mainly associated to three clone types found worldwide, suggesting an enrichment of local clones. Variable gene regions among the clinical P. aeruginosa ICE clc -type elements were notably enriched for heavy metal resistance genes, toxin-anti-toxin systems, potential efflux systems and multidrug resistance proteins, a metalloprotease and for a variety of regulatory systems, but not for specific recognizable antibiotic-resistance cassettes. Clonal persistence suggests adaptive benefits of these functional categories, and micro-patterns of gene gain and loss indicate ongoing ICE evolution within the P. aeruginosa hosts. IMPORTANCE Microbial populations swiftly adapt to changing environments through horizontal gene transfer. While the mechanisms of gene transfer are well known, the impact of environmental conditions on the selection of transferred gene functions remains less clear. We investigated ICEs, specifically the ICE clc -type, in Pseudomonas aeruginosa clinical isolates. Our findings revealed co-evolution between ICEs and their hosts, with ICE transfers occurring within strains. Gene functions carried by ICEs are positively selected, including potential virulence factors and heavy metal resistance. Comparison to publicly available P. aeruginosa genomes unveiled widespread antibiotic-resistance determinants within ICE clc clades. Thus, the ubiquitous ICE clc family significantly contributes to P. aeruginosa ’s adaptation and fitness in diverse environments.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3