Purification and Characterization of β-Glucosidase of Alcaligenes faecalis

Author:

Han Y. W.1,Srinivasan V. R.1

Affiliation:

1. Department of Microbiology, Louisiana State University, Baton Rouge, Louisiana 70803

Abstract

A cellobiose-utilizing bacterium isolated from sugar cane bagasse and identified as a strain of Alcaligenes faecalis (ATCC 21400) produced an inducible β-glucoside-splitting enzyme. The enzyme was purified by a series of streptomycin and ammonium sulfate fractionations and by Sephadex and diethylaminoethyl column chromatography. The final preparation was purified 130-fold, with a recovery of about 10% of the initial enzyme activity. The enzyme had a wide p H range, with optimal activity at p H 6.0 to 7.0. The enzyme was stable in solution at p H 6.5 to 7.8 when kept at 30 C for 2 hr, but it was destroyed by temperatures above 55 C. At 58 and 60 C, the time required to inactivate 90% of the initial activity was 16 and 6.5 min, respectively. An activation energy of 9,500 cal/mole and a K m of 1.25 × 10 −4 m were obtained by using p -nitrophenyl β-glucoside as a substrate. The K i value and hydrolysis of cellobiose by the enzyme indicated a high affinity of the enzyme for the cellobiose. The enzyme had its specificity on β-glucosidic linkage and the rate of hydrolisis of glucosides depended upon the nature of the aglycon moiety. The inactivation studies showed the presence of sulfhydryl groups in the enzyme. The activity of the enzyme was easily destroyed by the Cu ++ and Hg ++ ions. The Michaelis-Menton relationship and the rate of heat inactivation indicated the presence of one type of noninteracting active site in the bacterial β-glucosidase. Molecular weight of the enzyme was estimated by gel filtration (Sephadex G-200) and sucrose density gradient, and a value of 120,000 to 160,000 was obtained.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3