Linking Microbial Phylogeny to Metabolic Activity at the Single-Cell Level by Using Enhanced Element Labeling-Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (EL-FISH) and NanoSIMS

Author:

Behrens Sebastian1,Lösekann Tina2,Pett-Ridge Jennifer3,Weber Peter K.3,Ng Wing-On1,Stevenson Bradley S.4,Hutcheon Ian D.3,Relman David A.25,Spormann Alfred M.1

Affiliation:

1. Departments of Chemical Engineering and of Civil and Environmental Engineering, Stanford University, Stanford, California 94305

2. Departments of Microbiology and Immunology and of Medicine, Stanford University, Stanford, California 94305

3. Glenn T. Seaborg Institute, Chemistry, Materials, Earth and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551

4. Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019

5. VA Palo Alto Health Care System, Palo Alto, California 94304

Abstract

ABSTRACT To examine phylogenetic identity and metabolic activity of individual cells in complex microbial communities, we developed a method which combines rRNA-based in situ hybridization with stable isotope imaging based on nanometer-scale secondary-ion mass spectrometry (NanoSIMS). Fluorine or bromine atoms were introduced into cells via 16S rRNA-targeted probes, which enabled phylogenetic identification of individual cells by NanoSIMS imaging. To overcome the natural fluorine and bromine backgrounds, we modified the current catalyzed reporter deposition fluorescence in situ hybridization (FISH) technique by using halogen-containing fluorescently labeled tyramides as substrates for the enzymatic tyramide deposition. Thereby, we obtained an enhanced element labeling of microbial cells by FISH (EL-FISH). The relative cellular abundance of fluorine or bromine after EL-FISH exceeded natural background concentrations by up to 180-fold and allowed us to distinguish target from non-target cells in NanoSIMS fluorine or bromine images. The method was optimized on single cells of axenic Escherichia coli and Vibrio cholerae cultures. EL-FISH/NanoSIMS was then applied to study interrelationships in a dual-species consortium consisting of a filamentous cyanobacterium and a heterotrophic alphaproteobacterium. We also evaluated the method on complex microbial aggregates obtained from human oral biofilms. In both samples, we found evidence for metabolic interactions by visualizing the fate of substrates labeled with 13 C-carbon and 15 N-nitrogen, while individual cells were identified simultaneously by halogen labeling via EL-FISH. Our novel approach will facilitate further studies of the ecophysiology of known and uncultured microorganisms in complex environments and communities.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 211 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3