Heparan Sulfates and Coxsackievirus-Adenovirus Receptor: Each One Mediates Coxsackievirus B3 PD Infection

Author:

Zautner A. E.1,Körner U.1,Henke A.1,Badorff C.2,Schmidtke M.1

Affiliation:

1. Institute of Virology and Antiviral Therapy, Friedrich Schiller University Jena, D-07745 Jena

2. Molecular Cardiology, Department of Cardiology, University of Frankfurt, 60590 Frankfurt/Main, Germany

Abstract

ABSTRACT Amino acid exchanges in the virus capsid protein VP1 allow the coxsackievirus B3 variant PD (CVB3 PD) to replicate in decay accelerating factor (DAF)-negative and coxsackievirus-adenovirus receptor (CAR)-negative cells. This suggests that molecules other than DAF and CAR are involved in attachment of this CVB3 variant to cell surfaces. The observation that productive infection associated with cytopathic effect occurred in Chinese hamster ovary (CHO-K1) cells, whereas heparinase-treated CHO-K1 cells, glucosaminoglycan-negative pgsA-745, heparan sulfate (HS)-negative pgsD-677, and pgsE-606 cells with significantly reduced N-sulfate expression resist CVB3 PD infection, indicates a critical role of highly sulfated HS. 2- O -sulfate-lacking pgsF-17 cells represented the cell line with minimum HS modifications susceptible for CVB3 PD. Inhibition of virus replication in CHO-K1 cells by polycationic compounds, pentosan polysulfate, lung heparin, and several intestinal but not kidney HS supported the hypothesis that CVB3 PD uses specific modified HS for entry. In addition, recombinant human hepatocyte growth factor blocked CVB3 PD infection. However, CAR also mediates CVB3 PD infection, because this CVB3 variant replicates in HS-lacking but CAR-bearing Raji cells, infection could be prevented by pretreatment of cells with CAR antibody, and HS-negative pgsD-677 cells transfected with CAR became susceptible for CVB3 PD. These results demonstrate that the amino acid substitutions in the viral capsid protein VP1 enable CVB3 PD to use specific modified HS as an entry receptor in addition to CAR.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3