Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection

Author:

Liu T1,Tang Q1,Hendricks R L1

Affiliation:

1. Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago 60612, USA.

Abstract

Following herpes simplex virus type 1 (HSV-1) infection of the cornea, the virus is transmitted to the trigeminal ganglion, where a brief period of virus replication is followed by establishment of a latent infection in neurons. A possible role of the immune system in regulating virus replication and maintaining latency in the sensory neurons has been suggested. We have investigated the phenotype and cytokine pattern of cells that infiltrate the A/J mouse trigeminal ganglion at various times after HSV-1 corneal infection. HSV antigen expression in the trigeminal ganglion (indicative of the viral lytic cycle) increased until day 3 postinfection (p.i.) and then diminished to undetectable levels by day 7 p.i. The period of declining HSV antigen expression. was associated with a marked increase in Mac-1+ cells. These cells did not appear to coexpress the F4/80+ (macrophage) or the CD8+ (T cell) markers, and none showed polymorphonuclear leukocyte morphology, suggesting a possible early infiltration of natural killer cells. There was also a significant increase in the trigeminal ganglion of cells expressing the gamma delta T-cell receptor, and these cells were found almost exclusively in very close association with neurons. This period was also characterized by a rapid and equivalent increase in cells expressing gamma interferon and interleukin-4. The density of the inflammatory infiltrate in the trigeminal ganglion increased until days 12 to 21 p.i., when it was predominated by CD8+, Mac-1+, and tumor necrosis factor-expressing cells, which surrounded many neurons. By day 92 p.i., the inflammatory infiltrate diminished but was heaviest in mice with active periocular skin disease. Our data are consistent with the notion that gamma interferon produced by natural killer cells and/or gamma delta T cells may play an important role in limiting HSV-1 replication in the trigeminal ganglion during the acute stage of infection. In addition, tumor necrosis factor produced by CD8+ T cells and macrophages may function to maintain the virus in a latent state.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3