Candida albicans Tup1 Is Involved in Farnesol-Mediated Inhibition of Filamentous-Growth Induction

Author:

Kebaara Bessie W.1,Langford Melanie L.1,Navarathna Dhammika H. M. L. P.1,Dumitru Raluca1,Nickerson Kenneth W.1,Atkin Audrey L.1

Affiliation:

1. School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666

Abstract

ABSTRACT Candida albicans is a dimorphic fungus that can interconvert between yeast and filamentous forms. Its ability to regulate morphogenesis is strongly correlated with virulence. Tup1, a transcriptional repressor, and the signaling molecule farnesol are both capable of negatively regulating the yeast to filamentous conversion. Based on this overlap in function, we tested the hypothesis that the cellular response to farnesol involves, in part, the activation of Tup1. Tup1 functions with the DNA binding proteins Nrg1 and Rfg1 as a transcription regulator to repress the expression of hypha-specific genes. The tup1/tup1 and nrg1/nrg1 mutants, but not the rfg1/rfg1 mutant, failed to respond to farnesol. Treatment of C. albicans cells with farnesol caused a small but consistent increase in both TUP1 mRNA and protein levels. Importantly, this increase corresponds with the commitment point, beyond which added farnesol no longer blocks germ tube formation, and it correlates with a strong decrease in the expression of two Tup1-regulated hypha-specific genes, HWP1 and RBT1 . Tup1 probably plays a direct role in the response to farnesol because farnesol suppresses the haploinsufficient phenotype of a TUP1/tup1 heterozygote. Farnesol did not affect EFG1 (a transcription regulator of filament development), NRG1 , or RFG1 mRNA levels, demonstrating specific gene regulation in response to farnesol. Furthermore, the tup1/tup1 and nrg1/nrg1 mutants produced 17- and 19-fold more farnesol, respectively, than the parental strain. These levels of excess farnesol are sufficient to block filamentation in a wild-type strain. Our data are consistent with the role of Tup1 as a crucial component of the response to farnesol in C. albicans .

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3