Affiliation:
1. Department of Medical Microbiology and Immunology, University of Wisconsin— Madison Medical School, Madison, Wisconsin 53706
Abstract
ABSTRACT
We created plasmids for use in insertion-duplication mutagenesis (IDM) of
Neisseria gonorrhoeae
. This mutagenesis method has the advantage that it requires only a single cloning step prior to transformation into gonococci. Chromosomal DNA cloned into the plasmid directs insertion into the chromosome at the site of homology by a single-crossover (Campbell-type) recombination event. Two of the vectors contain an erythromycin resistance gene,
ermC
, with a strong promoter and in an orientation such that transcription will proceed into the cloned insert. Thus, these plasmids can be used to create insertions that are effectively nonpolar on the transcription of downstream genes. In addition to the improved
ermC
, the vector contains two copies of the neisserial DNA uptake sequence to facilitate high-frequency DNA uptake during transformation. Using various chromosomal DNA insert sizes, we have determined that even small inserts can target insertion mutation by this method and that the insertions are stably maintained in the gonococcal chromosome. We have used IDM to create knockouts in two genes in the gonococcal genetic island (GGI) and to clone additional regions of the GGI by a chromosome-walking procedure. Phenotypic characterization of
traG
and
traH
mutants suggests a role for the encoded proteins in DNA secretion by a novel type IV secretion system.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献