Direct detection of Mycobacterium tuberculosis in respiratory specimens in a clinical laboratory by polymerase chain reaction

Author:

Forbes B A1,Hicks K E1

Affiliation:

1. Department of Clinical Pathology, State University of New York Health Science Center, Syracuse 13210.

Abstract

The emergence of epidemic multiple-drug-resistant (MDR) strains of Mycobacterium tuberculosis in conjunction with an increase in the number of reported cases of tuberculosis (TB) represents a major public health problem. In light of a recent outbreak of MDR M. tuberculosis at our center, we began the development of a polymerase chain reaction (PCR) assay for the rapid diagnosis of pulmonary TB using two sets of primers, one based on the IS6110 repeated sequence of M. tuberculosis and the other based on the protein antigen b (PAB). Reaction conditions were first optimized as to the appropriate extraction protocol and the concentrations of primer pairs, nucleotides, and MgCl2. Following a preliminary evaluation of the assay with clinical specimens, extraction and amplification procedures were further modified. PAB and IS6110 primers detected between 2 and 23 and 0.023 and 0.23 CFU of M. tuberculosis, respectively, in pooled, M. tuberculosis-negative sputa by our optimized PCR assay. After routine processing for mycobacteria, 734 specimens were subsequently amplified. DNA for amplification was obtained by boiling and beating the sediments with Tween 20. For each reaction, DNA (10 microliters) was added to an amplification mixture containing 12 pmol of IS6110 primers, 20 pmol of PAB primers, 2 mM MgCl2, 200 microM nucleotides, and 2.5 U of Taq polymerase and the mixture was then amplified for 40 cycles. The sensitivity and specificity of our PCR assay were 87.2 and 97.7%, respectively. We were unable to interpret the results for seven specimens (1%). In our experience, PCR proved to be a useful rapid diagnostic test for TB in a clinical setting and a valuable epidemiological tool for determining exposure groups in the hospital setting. Our findings also underscore the need for the systematic optimization of PCR assay conditions.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3