Assembly of the RAG1/RAG2 Synaptic Complex

Author:

Mundy Cynthia L.1,Patenge Nadja1,Matthews Adam G. W.1,Oettinger Marjorie A.1

Affiliation:

1. Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114

Abstract

ABSTRACT Assembly of antigen receptor genes by V(D)J recombination requires the site-specific recognition of two distinct DNA elements differing in the length of the spacer DNA that separates two conserved recognition motifs. Under appropriate conditions, V(D)J cleavage by the purified RAG1/RAG2 recombinase is similarly restricted. Double-strand breakage occurs only when these proteins are bound to a pair of complementary signals in a synaptic complex. We examine here the binding of the RAG proteins to signal sequences and find that the full complement of proteins required for synapsis of two signals and coupled cleavage can assemble on a single signal. This complex, composed of a dimer of RAG2 and at least a trimer of RAG1, remains inactive for double-strand break formation until a second complementary signal is provided. Thus, binding of the second signal activates the complex, possibly by inducing a conformational change. If synaptic complexes are formed similarly in vivo, one signal of a recombining pair may be the preferred site for RAG1/RAG2 assembly.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Mechanism, Regulation and Evolution of V(D)J Recombination;Molecular Biology of B Cells;2024

2. The Public Face and Private Lives of T Cell Receptor Repertoires;Mathematical, Computational and Experimental T Cell Immunology;2021

3. B Cell Development and Maturation;Advances in Experimental Medicine and Biology;2020

4. Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination;Molecular and Cellular Biology;2015-11

5. The Mechanism of V(D)J Recombination;Molecular Biology of B Cells;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3