DNA-promoted assembly of the active tetramer of the Mu transposase.

Author:

Baker T A,Mizuuchi K

Abstract

A stable tetramer of the Mu transposase (MuA) bound to the ends of the Mu DNA promotes recombination. Assembly of this active protein-DNA complex from monomers of MuA requires an intricate array of MuA protein-binding sites on supercoiled DNA, divalent metal ions, and the Escherichia coli HU protein. Under altered reaction conditions, many of these factors stimulate assembly of the MuA tetramer but are not essential, allowing their role in formation of the complex to be analyzed. End-type MuA-binding sites and divalent metal ions are most critical and probably promote a conformational change in MuA that is necessary for multimerization. Multiple MuA-binding sites on the DNA contribute synergistically to tetramer formation. DNA superhelicity assists cooperativity between the sites on the two Mu DNA ends if they are properly oriented. HU specifically promotes assembly involving the left end of the Mu DNA. In addition to dissecting the assembly pathway, these data demonstrate that the tetrameric conformation is intrinsic to MuA and constitutes the form of the protein active in catalysis.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference31 articles.

1. Adzuma, K. and K. Mizuuchi. 1988. MuA protein-induced bending of the Mu end DNA. In Structure and expression. Vol. 3: DNA bending and curvature, (ed. W.K. Olson, M.H. Sarma, R.H. Sarma, and M. Sundaralingam), pp. 97–104. Adenine Press, Schenectady, New York.

2. Interaction of proteins located at a distance along DNA: Mechanism of target immunity in the Mu DNA strand-transfer reaction

3. Synapsis, strand scission, and strand exchange induced by the FLP recombinase: Analysis with half-FRT sites.;Mol. Cell. Biol.,1991

4. Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon

5. Transposon Tn7

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3