Affiliation:
1. Laboratory of Molecular Neurosciences, Institute of Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
Abstract
ABSTRACT
Sphingomyelin is a major lipid in the bilayer of subcellular membranes of eukaryotic cells. Different sphingomyelinases catalyze the initial step in the catabolism of sphingomyelin, the hydrolysis to phosphocholine and ceramide. Sphingomyelinases have been postulated to generate ceramide as a lipophilic second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. To elucidate the function of the first cloned Mg
2+
-dependent, neutral sphingomyelinase (nSMase 1) in sphingomyelin catabolism and its potential role in signaling processes in a genetic and molecular approach, we have generated an nSMase 1-null mutant mouse line by gene targeting. The nSMase 1-deficient mice show an unconspicuous phenotype and no accumulation or changed metabolism of sphingomyelin or other lipids, despite grossly reduced nSMase activity in all organs except brain. We also addressed the recent proposal that nSMase 1 possesses lysophospholipase C activity. The unaltered metabolism of lysophosphatidylcholine or lyso-platelet-activating factor excludes the proposed role of nSMase 1 as a lysophospholipase C.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献