Characterization of a Neutral Sphingomyelinase Activity in Human Serum and Plasma

Author:

Mühle Christiane1ORCID,Kornhuber Johannes1ORCID

Affiliation:

1. Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany

Abstract

Alterations of sphingolipids and their metabolizing enzymes play a role in various diseases. However, peripheral biomarkers for such changes are limited. Particularly, in the increasingly reported involvement of neutral sphingomyelinase (NSM) with four described isoforms in tissues or cells, a peripheral marker is lacking. We here describe the detection of an NSM activity in human serum and plasma samples which hydrolyses fluorescently labeled sphingomyelin to ceramide in a time- and volume-dependent manner. Reaction rates were linear up to 10 days, and serum volumes above 2 vol-% were inhibitory. Biochemical properties were different from acid sphingomyelinase (ASM) with respect to detergent specificity (sodium deoxycholate), pH profile (pH 7–9), and cation dependence: Serum NSM activity was inhibited by EDTA ≥ 1 µM and restored in EDTA-anticoagulated plasma with the addition of ≥ 100 µM Co2+. It was independent of Mg2+, the typical cofactor of cellular NSM species, and even inhibited by [Mg2+] ≥ 20 mM. Serum NSM activity was not correlated with ASM activity and was independent of sex and age in 24 healthy adults. Since human peripheral NSM activity is very low and activities in rodents are even lower or undetectable, future research should aim to increase the reaction rate and determine the source of this enzymatic activity. The established activity could serve as a future biomarker or therapeutic target in diseases affected by sphingolipid derangements.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3